Salmonella-Directed Recruitment of New Membrane to Invasion Foci via the Host Exocyst Complex

نویسندگان

  • Christina D. Nichols
  • James E. Casanova
چکیده

Salmonella attachment to the intestinal epithelium triggers delivery of bacterial effector proteins into the host cytosol through a type III secretion system (T3SS), leading to pronounced membrane ruffling and macropinocytic uptake of attached bacteria. The tip of the T3SS is made up of two proteins, SipB and SipC, which insert into the host plasma membrane, forming a translocation pore. Both the N and C termini of SipC are exposed in the host cytosol and have been shown to directly modulate actin cytoskeleton assembly. We have identified a direct interaction between SipC and Exo70, a component of the exocyst complex, which mediates docking and fusion of exocytic vesicles with the plasma membrane. Here, we show that exocyst components coprecipitate with SipC and accumulate at sites of invasion by Salmonella typhimurium. Exocyst assembly requires activation of the small GTPase RalA, which we show is triggered during Salmonella infection by the translocated effector, SopE. Knockdown of RalA or Sec5 results in reduced membrane ruffling at sites of attachment and impairs bacterial entry into host cells. These findings suggest that S. typhimurium enhances invasion efficiency by promoting localized membrane expansion, directly through SipC-dependent recruitment of the exocyst and indirectly via SopE-dependent activation of RalA.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bacterial Invasion: Entry through the Exocyst Door

Salmonella entry into host cells involves rearrangements of actin and mobilization of membranes. Here we discuss new findings showing that Salmonella recruits the exocyst complex, which plays a role in vesicle secretion, to the site of invasion to promote its entry.

متن کامل

Salmonella Virulence Effector SopE and Host GEF ARNO Cooperate to Recruit and Activate WAVE to Trigger Bacterial Invasion

Salmonella virulence effectors elicit host cell membrane ruffling to facilitate pathogen invasion. The WAVE regulatory complex (WRC) governs the underlying membrane-localized actin polymerization, but how Salmonella manipulates WRC is unknown. We show that Rho GTPase activation by the Salmonella guanine nucleotide exchange factor (GEF) SopE efficiently triggered WRC recruitment but not its acti...

متن کامل

The type three secreted effector SipC regulates the trafficking of PERP during Salmonella infection

Salmonella enterica Typhimurium employs type III secreted effectors to induce cellular invasion and pathogenesis. We previously reported the secreted effector SipA is in part responsible for inducing the apical accumulation of the host membrane protein PERP, a host factor we have shown is key to the inflammatory response induced by Salmonella. We now report that the S. Typhimurium type III secr...

متن کامل

Visualization of the exocyst complex dynamics at the plasma membrane of Arabidopsis thaliana

The exocyst complex, an effector of Rho and Rab GTPases, is believed to function as an exocytotic vesicle tether at the plasma membrane before soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex formation. Exocyst subunits localize to secretory-active regions of the plasma membrane, exemplified by the outer domain of Arabidopsis root epidermal cells. Using vari...

متن کامل

The exocyst is required for trypanosome invasion and the repair of mechanical plasma membrane wounds.

The process of host cell invasion by Trypanosoma cruzi shares mechanistic elements with plasma membrane injury and repair. Both processes require Ca(2+)-triggered exocytosis of lysosomes, exocytosis of acid sphingomyelinase and formation of ceramide-enriched endocytic compartments. T. cruzi invades at peripheral sites, suggesting a need for spatial regulation of membrane traffic. Here, we show ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2010